
Non-standard covariant deformed oscillator algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 5919

(http://iopscience.iop.org/0305-4470/27/17/024)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Moth. Gen. 27 (1994) 5919-5924. Primed in the UK 

Non-standard covariant deformed oscillator algebras 

C Quesnett 
Physique Nucleaire Theorique et Physique Math6matique. Universit4 tibre de Bruxelles, 
Campus de la Plaine CP229, Boulevard du Triomphe, B1050 Bmxella, Belgium 

Received 2 March 1994 

Abskact It is shown that deformed oscillator algebras with a non-standard behaviour, similar 
to that observed for the quon algebra, arise quite naturally when imposing covariance propenies 
under the transformations of some quantum group. By non-standard behaviour, we mean that 
there may not be enough rules available to order creation operators and that some Fock s t a m  
with positive squared norm for generic 9-values disappw for 9 + 1. Two examples are given 
for the quantum groups Oq(3. R) and SUy(2) X SUq(2)  z- Oq(4,R),  respectively. 

It has been known for decades that Bose and Fermi statistics are not the only ones 
allowed within the framework of quantum mechanics [I]. With the advent of quantum 
groups and q-algebras (see e.g. [2] and references quoted therein), q-deformations of the 
canonical commutation or anticommutation relations have recently become a subject of 
intense study [3-12]. Deformed commutators are used, for instance, in the quon statistics 
[I31 which has aroused considerable interest during the last few years because it provides 
a smooth interpolation between Bose and Fermi statistics. 

The quon algebra, depending on a single real parameter q ,  has a representation in a Fock 
space with non-negative scalar products as long as q lies in the ranze -1 < q < +1 [13]. 
For - 1 < q < + 1, all irreducible representations of the symmetric group have a positive 
squared norm, whereas for q = + I  (respectively q = -I), only the symmetric (respectively 
antisymmetric) representation survives. Hence, there is no oneto-one correspondence 
between Fock states corresponding to generic q values and those obtained for q = +I 
or -1, 

Another remarkable (and related) feature of the quon algebra is that no commutation 
relation is (or can be) imposed on two creation or two annihilation operators. This contrasts 
with some other consbuctions of deformed commutators wherein relations between all pairs 
of operators are required from the very beginning 161. 

The purpose of the present paper is to show that deformed oscillator algebras sharing 
some features with the quon algebra arise quite naturally when imposing covariance 
properties under the transformations of some quantum group. It should be stressed that such 
features are absent in those covariant algebras that have been considered so far, namely q- 
bosonic algebras covariant under S U y ( n )  [5], SU,,(n) x SU,,(m) [9,10] or O,(N, W) [ I  1,121 
and q-fermionic algebras covariant under SU,,(n) [5] or USpq(2n) [11,12]. In all these 
cases, definite rules are indeed available for transposing any two operators and q-bosonic 
(respectively q-fermionic) Fock states can be put into one-to-one correspondence with their 
bosonic (respectively fermionic) counterparts. 

t Directeur de recherche5 FNRS. 
3 e.mail: cquesne@ulbac.be 
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The first example we shall deal with is an 0,(3, W)-covariant algebra spanned by three 
t pairs of creation and annihilation operators B,, B, = (BA) t ,  m = + I ,  0, - 1  and the 

unit operator. As in [ l l ] ,  the operators EA and km = (-l)mqm/zB-m, where q E Rt, 
are the components of vector operators with respect to the q-algebra soY(3). but instead of 
fulfilling the coupled q-commutation relations (7) given in [ 111, they are assumed to satisfy 
the relations 

( B t ,  Bt]’ = (E, E]’ = 0 

{E,  Bt$, = (i, B t ) )  = 0 

( 1 4  

(I@ {E, B+);z = -mz. 
Here [n], = (q”/’ - q-“lZ)/(q’/’ - q-‘/’) denotes a q-number and (TI, U”’)$. is an 
s0,(3) coupled q-anticommutator of the irreducible tensors T A  and UA’ defined by 

(2 )  (TA, U*’]&,, = [TA x u”1; + (-1) A+A’-A q a/’ [U’.‘ x T”$ 

with 

and (, an su,(2) N s0,(3) Wigner coefficient. Note that in (l), A = A‘ = 1 and, for 
simplicity’s sake, label M has been skipped. 

By using the numerical values of the Wigner coefficients [141 and ordinary q- 
anticommutators defined by (X, YlqV = XY + q‘l’YX, relations (1) can be written in 
explicit form as 

( B t .  Btl = (B!,, B i l l  = 0 (40) 

( 4 4  

I O  (44  

(4Jl 

(4g) 

(E-,, B,  t ty -4  = (Bo, B1I4-2 t 

(E-,, B0]y-2 t = (q-5/z - q-’”)B’E 

( B I .  Et} = I (Bo, B;ly-2 = I + (q-’- l)B,Bi t 

( B - I .  Bt11 = I + (q-’ - 1)[(1 -q - ’ )B /B i  + BiBol 

= 0 

together with the Hermitian conjugates of (4+0e). 
One procedure for constructing the algebra defined in (1) or (4) is based upon the 

fundamental R-matrix of the quantum group 0,(3,R) [2 ] .  The corresponding braid matrix 
k has three eigenspaces characterized by ‘angular momentum’ L = 2, 1 or 0 corresponding 
to the eigenvalues q. -q-’ and q-’, respectively. As shown in [12], an associative deformed 
oscillator algebra can be constructed by imposing that the relations among creation (or 
annihilation) operators be determined by a projector onto a braid-matrix eigenspace: for 
the q-bosonic operators considered in [12] (or [Ill).  it is the eigenspace characterized by 
L = 1, whereas, here, we use the eigenspace specified by L = 2 (see (la)). Once the 
projector has been chosen, it turns out that the associativity condition entirely fixes (up to 
a change of q into q - l )  the commutation properties of the annihilation operators with the 
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creation operators. The resulting set of relations remains invariant under the coaction of 
0,(3, a), thus showing that the algebra is 0,(3, R)-covariant. 

Alternatively, as in I l l ] ,  the defining relations (1) of the algebra can be derived by 
using the q-algebra so,(3). First, one checks that relations (la) or (4a)-(4c) among the 
creation operators satisfy associativity by proving that the two braid transposition schemes 

remaining relations, the q-dependence is fixed by imposing associativity through the use of 
Racah's sum rule generalized to su,(2) =so,(?.) [14]. In this so,(3) approach, irreducible 
tensor coupling automatically ensures covariance. 

It is clear that equation (4) provides us with enough relations to normally order any 
product of creation and annihilation operators, i.e. to put the operators in a standard 
lexicographical ordering so that creation operators go to the left, destruction to the right, 
e.g. (Bf)"l(E,')"O(E~l).-l(E-~)"'~ ( B o ) " ~ ( E ~ ) " ~ .  From this viewpoint, the present covariant 
deformed oscillator algebra does not differ from those previously studied [5,8-12]. 

A first discrepancy appears when considering the q -+ 1 limit of (4). We indeed obtain 
the defining relations of fermion operators 

starting from (E- ,  t t t  Eo)Bl and E!,(E,'E[). respectively, lead to the same result. Then, in the 

[ B ~ , B ~ , } = [ E , , , , E m t ] = O  {E,,,,B~,t=&.,,,~I (5 )  

except for the relations (E,', E J )  = {Bo, BO) = 0, which are missing. As a matter of fact, 
to obtain equation (5 )  for any values of m and m' in the q + 1 limit, the defining relations 
of the algebra should contain, in addition to (1). the equation 

(6) 

and its Hermitian conjugate. Combining (6) with (4c) would lead to the two equivalent 
relations 

(7) 

{ ~ t ,  B~)O = o or ( E , ,  t t  E - ~ ) , . ~  = q-'/z(~,'t)z 

{e [ ,  E!,)  = 0 = (q1l2 - q-'/Z)BtBt I - 1 .  

t t  By working out the two braid transposition schemes for B1 E-, E , ,  for instance, it is easy 
to check that, except in the q --t 1 limit, associativity is not preserved by the set of 
relations (4a), (4b), (44-(4g) and (7). Hence, equation (6) cannot be added to (1) for q # 1 .  
This also follows from the fact that for q # 1, the braid-matrix eigenspaces with L = 2 
and L = 0 correspond to distinct eigenvalues. 

A second discrepancy with respect to standard covariant deformed algebras appears 
when considering the Fock space that can be constructed by acting with the operators EL 
on the vacuum IO), i.e. the state annihilated by E,, m = + I ,  0, -1 such that (010) = 1 .  
From (4a), it follows that we may restrict ourselves to the monomial states 

~ n ~ n o n - ~ )  = (B~)~~(B,')~~~(B!~).-~~o) nl,n-1 = 0 , 1  no = 0 . 1 , 2 , .  . . . (8) 

It is a simple matter to prove that 

(n;nbnLl Inlnon-1) = S.;,",s,,,,,S.,,.,_, Ino),J (9) 

where p = -q-', [n),, = (1 - p")/(l - p ) ,  (n},,! = {n)p{n  - . (I),, for n E N+ and 
{O),,! = 1. As long as q > 1 ,  the overlap matrix of states (8) is therefore positive definite 
and the states 

Inlnon-1) = ( ( ~ o ) ~ ! ) - ~ ~ ~ ( E ~ ) " ' ( E ~ ) ~ ( B ! ~ ~ - '  IO) 

n1,n-l =0,1 n o = 0 , 1 , 2  ,... (10) 
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form a Fock-space orthonormal basis. While the operators B / ,  B t l  are Fermi-lie, BA is 
instead Base-liket. In the q + 1 or p + -1  limit, however, since (21, -+ 0, only the 
states Inlnon-1) with no = 0 or 1 survive so that Bo becomes a fermion operator. 

The second example we shall deal with is an SUq(Z) x SU&) (or equivalently 
0,(4, W))avariant algebra, spanned by the unit operator and four pairs of creation and 
annihilation operators A,, Ai, = i, s = 1 ,  2, which will also be denoted by B?, 
Bp = (BL)‘, I.L = 1 ,  2, 3, 4: 

t 

t 

Bf = AI, B: = AI2 Bf =A!, B i  = A!*. (11)  

after performing the substitutions q + q2 ,  BI + B / ,  Bl + iB,, t t  B3 + iB,, t t  B4 -+ B4. t 
The former notation is adapted to SU,,(2) x SU,(2) while the latter corresponds to 0,(4, W) 

As in [9] and [lo], the operators A t  and Ai, = (-l)’+sq(3-’-s’~zA~ d ‘ b  $ where i’ = 3 - i, 
sf = 3 - s and q E W+ are components of double spinors with respect to the q-algebra 
su,(2) + su,(2), but instead of fulfilling equation (22) of [9] (for n = m = 2), they are 
assumed to satisfy the relations 

(1%) 

(A, A’)? = [2],1 (12b) 

[At, At]’.’ = [A, A)l,i = 0 

[A.Af]>!2 = {a. At)’,’ = {A, At)’*’ = 0 

where 

(TAIAz’,  uAlh}M,M2q* ’ * A i A i  = [TALA% x ~ A ~ ~ ~ ; $ ~ ~ + ( - ~ ) A ~ + A ~ + A ; + ~ - A ~ - A f q ~ / Z [ ~ A ~ A ;  x ~ A ~ A z l $ $ T  

(131 

and [TANA% x UA;A;]2,z2 is given by an equation similar to (3) but containing two 
suq(2) Y so,(3) Wigner coefficients instead of one. 

Taking (1  1)  into account, relations (12) can be written in explicit form as 

[ B f ,  B f ]  = ( B j ,  B f )  = ( B f ,  Bf) = ( B i ,  B i }  = O  

( B / ,  B i l ,  = 1Bf, BfI, = [ B l ,  4Iq = lB3,  f B419 t 
( B l ,  t t  B4lY2 = -q”(B;B: + B i B i )  

[Bi,Bzlq-l t = t B ~ , B s l q - l  t = ( B I , B ~ } , - Z = { B Z ~ B ~ I ~ - ~  t t = O  

{Bz,  B&-i t = (q-3/2 - q-’/*)BfBj 

{Bx. B4),-, t = (q-’/’ - q-”*)BtB 

( B j ,  B / )  = I 

(B4, B i t  = I + (4-l - 1)1(1 - q - ’ ) E ~ E t  + B ~ B z  + B,B31 t t  

( 1 4 4  

( 144 - 0  - 

(144 

(144 

(148 

(1%) 

(144 

2 1  

( 8 2 .  B l )  = (B3, B:} = I + (4-’ - 1)B;Bl 

( 14h) 

together with the Hermitian conjugates of (140)-(14j). 

t Note also thal the mixture of Bore-like and Fermi-like operaton obtained for q > I ,  although already observed 
before in connection with some non-standard R-matrices [8]. is new in the standard R-matrix context (disregarding 
the case of  quantum supergmups). 
2 Here. we use the notation of [IO] for &,, which slightly differs from lh8 of 191. 
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The algebra defined in (IZ), or (14). can be constructed by using either the q-algebraic 
technique or one of the two R-matrix formulations that were employed for q-bosonic 
operators in [91 and [lo], respectively. Some comments about associativity. analogous 
to those for the algebra defined in (1) or (4), could be made here. We shall instead go 
directly to the Fwk-state construction where some new features make their appearance. 

It is clear that equations (14a)-(14c) do not provide enough relations to put any product 
of creation operators in lexicographical order, no rule being available to reorder B l B i .  It 
can be shown that any monomial state 

Ipi!-k.. .pa )  = B i , B i 2 . .  . BLnIO) pi ,  pz.. . . , I*. = 1,. . . , 4  (15) 

with n > 3 can be rewritten in terms of the following states: 

1 l(23)”) 11 (23)”-’24) I l(32)”) 11 (32)”-’34) 1(23)”2) 

1(23)”4) 1(32)”3) 1(32)”4) if n = 2u + 1 

11(23)”-’2) I1(23)”-’4) I1(32)”-’3) 11(32)”-’4) l(23)”) 
(W 

1(23)”-’24) l(32)”) 1(32)”-’34) if n = 2v 

the one- and two-particle states being given by [I) ,  12), 13), 14) and 112), 113), 114), 123), 
124), 132), 134), respectively. In (16), (23)”, for instance, stands for the product (BiBf)!’. 

The overlap matrix of the monomial states can be recursively determined. For (160) 
and (16b), the results are 

(164  

respectively, where, for U = 1, 2, 

[[U]],, = 1 - q-’”. [[u]lq! = [[u]l,,[[u - 1]14.. . [[Illp for U E N+ and [[OIl4! = 1. As long 
as q > I ,  the overlap matrix is, therefore, positive definite and a Fock-space orthonormal 
basis is given by 

10) I(u)2) = ([[~ll,!)-~’~1(23)”2) l (~ )3 )  = ([[~llq!)-’’21(32)y3) 

[(U + 1)*) = (2[[u]],!(1 rq-”-’))-’/2[1(23)”+’) * 1(32)”+’)] (19) 

together with similar states obtained by adding labels 1, 4, or 14 Io (19), i.e. 11). Il(u)2), 
11(u)3), Il(u + I)%), 14), l(u)24), l(u)34), I(u + 1)4&), 114), ll(u)24), ll(u)34) and 
I I (U+ 1)4+). Such a basis contains both symmetric and antisymmetric states under exchange 
of labels 2 and 3, each of the latter being repeated auy number of times. 

U = 0, I. 2,. .. 
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In the q + I limit, however, the states with more than one label 2 or one label 3, as 
well as those symmetric under exchange of 2 with 3, have a vanishing norm so that the 
only surviving states are 

10) 11) 12) 13) 14) 112) 113) 114) 

I(l)-)  = i[123) - 132)] 124) 134) 11(1)-) = 4[1123) - 1132)J (20) 

1124) 1134) 1(1)4-) = ;[1234) - 1324)] 11(1)4-) = 4111234) - 11324)]. 
These states can be put into one-to-one correspondence with fermion states with which they 
can be identified. 

In conclusion, we have given two examples of covariant deformed oscillator algebras 
with a non-standard behaviour. The 6rst example provides enough rules to reorder any pair 
of operators, while, in the second, one rule is missing. In both cases, however, for q > 1, 
the Fock space contains some states that disappear in the q + 1 limit. A drastic change of 
statistics is therefore observed as in the case of the quon algebra. 

Covariant deformed oscillator algebras with such properties are very common and 
actually occur for any braid matrix with more than two distinct eigenvalues. The first 
algebra considered in the present paper, for instance, can be generalized to any quantum 
group 0,(2n -k 1,R) while the second algebra can be extended to any Uq(2n,R) or to any 

It is also worth noting that some algebras closer to the quon algebra, in the sense that 
they contain less relations among creation (or annihilation) operators, can be constructed. 
Using the projector onto the eigenspace of the 0,(3, W) braid matrix corresponding to L = 0 
would lead, for instance, to an algebra with a single relation among creation operators. 

SU,(n) x SUq(m) .  
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