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Non-standard covariant deformed oscillator algebras

C Quesnet}

Physique Nucléaire Théorigue et Physique Mathématigue, Université Libre de Bruxelles,
Campus de [a Plaine CP229, Boulevard du Trioraphe, B1050 Bruxelles, Belgium

Received 2 March 1994

Abstract. It is shown that deformed oscillator algebras with a non-standard behaviour, similar
to that observed for the quon algebra, arise gnite naturally wher imposing covariance properties
under the transformations of some quantum group. By non-standard behaviour, we mean that
there may not be encugh rules available to order creation operatoss and that some Fock states
with positive squared norm for generic g-values disappear for ¢ — 1. Two examples are given
for the quantum groups Oy (3, R} and SU,(2) x SU,(2) = O, (4, R), respectively.

It has been known for decades that Bose and Fermi statistics are not the only ones
allowed within the framework of quantum mechanics [1]. With the advent of quantum
groups and g-algebras (see e.g. [2] and references quoted therein), g-deformations of the
canonical commutation or anticomunutation relations have recently become a subject of
intense study [3-12]. Deformed commutators are used, for instance, in the quon statistics
[13] which has aroused considerable interest during the last few years because it provides
a smooth interpolation between Bose and Fermi statistics.

The quon algebra, depending on a singie real parameter g, has 2 representation in a Fock
space with non-negative scalar products as long as g les in the range —1 < ¢ € +1 [13].
For —1 < g < +1, all irreducible representations of the symmetric group have a positive
squared norm, whereas for g = +1 (respectively g = —1), only the symmetric (respectively
antisymmetric} representation survives. Hence, there is no one-to-one correspondence
between Fock states corresponding to generic g values and those obtained for ¢ = +1
or —1.

Another remarkable (and related) feature of the quon algebra is that no commutation
relation is (or can be) imposed on two creation or two annihilation operators. This contrasts
with some other constructions of deformed commutators wherein relations between all pairs
of operators are required from the very beginning [6].

The purpose of the present paper is to show that deformed oscillator algebras sharing
some features with the quon algebra arise quite naturally when imposing covariance
properties under the transformations of some quantum group. It should be stressed that such
features are absent in those covariant algebras that have been considered so far, namely g-
bosonic algebras covariant under SU, (n) [5], SU,(n) x SU, (m) [9, 10] or O,(N,R) [11,12]
and g-fermionic algebras covariant under SU,(n) [5] or USp,(2n) [11,12]. In all these
cases, definite rules are indeed available for transposing any two operators and g-bosonic
(respectively g-fermionic) Fock states can be put into one-to-one correspondence with their
bosonic (respectively fermionic) counterparts.
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The first example we shall deal with is an ©,(3, R)-covariant algebra spanned by three
pairs of creation and annihilation operators B,‘;, B, = (B,L)T, m=+1, 0, —1I and the
unit operator. As in [11], the operators Bj, and B,, = (—1)"g™2B_,,, where ¢ & R™,
are the components of vector operators with respect to the g-algebra so,(3), but instead of
fulfilling the coupled g-commutation relations (7) given in [11], they are assumed to satisfy
the relations

(Bt B2 = (B, BP =0 (1a)
{3, B, =1{B,BYY =0 (BB}, =-/3],/. (10)

Here [n], = (g"* — g~*%)/(g"/* — g~'/?) denotes a g-number and (T*, U’L'}i}qq is an
504(3) coupled g-anticommutator of the irreducible tensors T* and U * defined by

(T, UM e = [T s UMy + (1M 22U x THYY, @
with
[T x U¥Yy = > G, Mol | AMY,TRUL, (3)
uy!

and {, 1}, an su,(2) = so,(3) Wigner coefficient. Note that in (I}, A = A’ = 1 and, for
simplicity’s sake, label M has been skipped.

By using the numerical values of the Wigner coefficients [14] and ordinary ¢-
anticommutators defined by {X, Y}, = XY + g*/*YX, relations (1) can be written in
explicit form as

(8!, Bly= (B!, B} =0 (4a)
(Bl, Bl}a = {B§, B} =0 (4b)
(8], Bl }p = ~(¥* + ¢%)(B})? (4c)
{B_y, Bl}y = {Bo, B}y =0 (4d)
(B_1, Bl}g» = (@™ — 7'} B] B, @e)
(B, B} =1 (Bo, Bi},» = I + (g7 — 1B} B, {4
{Bo1, BL Y =T+~ DI(1—¢7")B]B) + B}Bo) “g)

together with the Hermitian conjugates of (4a)—(4e).

One procedure for constructing the algebra defined in (1) or (4) is based upon the
fundamental R-matrix of the quantum group 0,(3, R} [2]. The corresponding braid matrix
R has three eigenspaces characterized by ‘angular momentum’ L = 2, 1 or 0 corresponding
to the eigenvalues g, —g~* and ¢~2, respectively. As shown in [12], an associative deformed
oscillator algebra can be constructed by imposing that the relations among creation (or
annihilation) operators be determined by a projector onic a braid-matrix eigenspace: for
the g-bosonic operators considered in [12] {or f11]), it is the eigenspace characterized by
L = 1, whereas, here, we use the eigenspace specified by L = 2 (see (1a)). Once the
projector has been chosen, it turns ont that the associativity condition entirely fixes (up to
a change of ¢ into g~') the commutation properties of the annihilation operators with the
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creation operators. The resulting set of relations remains invariant under the coaction of
0,(3, R), thus showing that the algebra is 0, (3, R)-covariant.

Alternatively, as in [11), the defining relations (1) of the algebra can be derived by
using the g-algebra so,(3). First, one checks that relations (1a) or (4a)—{4c) among the
creation operators satisfy associativity by proving that the two braid transposition schemes
starting from (Bi1 B&)Bf and BL(JBGr BI), respectively, lead to the same result. Then, in the
remaining relations, the g-dependence is fixed by imposing associativity through the use of
Racah’s sum rule generalized to su,(2) ~ 50,(3) [14]. In this s0,(3) approach, irreducible
tensor coupling automatically ensures covariance.

It is clear that equation (4) provides us with enough relations to normally order any
product of creation and annihilation operators, i.e. to put the operators in a standard
lexicographical ordering so that creation operators go to the left, destruction to the right,
e.g. (Bf)“‘(BE,)“"(BL)"-' (B_;)"-t(Bg)™(B;)". From this viewpoint, the present covariant
deformed oscillator algebra does not differ from those previously studied [5, 8-12).

A first discrepancy appears when considering the ¢ —» 1 limit of (4). We indeed obtain
the defining relations of fermion operators

(B!, B!} ={Byn, Bw} =0 {Buy Bl} = 8] (5)

except for the relations [BT, Bg} = {Bgy, By} = 0, which are missing. As a matter of fact,
to obtain equation (5) for any values of m and m’ in the g — 1 limit, the defining relations
of the algebra should contain, in addition to (1), the equation

(BL,BYY=0 o (Bl B!}, =g%B}) (6)

and its Hermitian conjugate. Combining (6) with (4¢) would lead to the two equivalent
relations

(Bl.BL1=0 (B =(¢"*-¢V)B!Bl,. M

By working out the two braid transposition schemes for B, BLB;’ , for instance, it is easy
to check that, except in the ¢ — 1 limit, associativity is not preserved by the set of
relations (da), (45), (4d)—(4g) and (7). Hence, equation (6) cannot be added to (1) for g # 1.
This also follows from the fact that for g 3 1, the braid-matrix eigenspaces with L = 2
and L = 0 correspond to distinct eigenvalues.

A second discrepancy with respect to standard covariant deformed algebras appears
when considering the Fock space that can be constructed by acting with the operators B},
on the vacuum |0}, i.e. the state annihilated by B, m = +1, 0, —1 such that {0|0) = 1.
From {4a), it follows that we may restrict ourselves to the monomial states

Imnon_y) = BHM(BH®BLY-110)  nin =01 np=0,1,2,.... (8)
It is a simple matter to prove that
(n’[n;}nillnlnon-l) = 6n', .man{,.nuan’ ,.n-,{ﬂo}pl ®

where p = —g~*, {n}, = (1 — p")/(1 = p), [}l = {nlpfn —1},.. {l}p forn € N* and
{0},! = 1. As long as g > 1, the overlap matrix of states (8) is therefore positive definite
and the states

Immon_y} = ({no},)~2(B])" (B (BL,)™-'10)
o =0,1 np=0,1,2,... (10)
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form a Fock-space orthonormal basis. While the operators Bf , Bil are Fermi-like, Bg is
instead Bose-likef. In the g — 1 or p — —1 limit, however, since {2}, — 0, only the
states jnynon_r1) with ng = 0 or 1 survive so that B; becomes a fermion operator.

The second example we shall deal with is an SU,(2) x SU,(2) (or equivalently
0,(4, R))-covariant algebra, spanned by the unit operator and four pairs of creation and
annihilation operators A:-',, A = (AL)*, i, s =1, 2, which will also be denoted by BL,
By= B, u=1234

BI = Afl B; = A‘{z B:I = A;l Bi = Agz' (11
The former notation is adapted to SU, (2} x SU, (2) while the latter comresponds to O, (4, R)
after performing the substitutions ¢ — ¢%, B} — B}, B} — iBl, B} — iBl, B} — B].
As in [9] and [10], the operators A}‘, and A; = (—1)*gC-1-V2 4,1t where i’ =3 — i,
s’ =3 —s5 and g € R* are components of double spinors with respect to the g-algebra

sit4(2) + sug(2), but instead of fulfilling equation (22) of [9] (for n = m = 2), they are
assumed to satisfy the relations

(Af, Ay = (A, A} =0 (124)
(A AL =4, AN = {4, A =0 {440 =127 (12b)

where
{Tkllg, Uﬁ.jl&}i}tﬁzqw = [Tl[lg b Ul&l&l?{iggz.‘l— (__1)).|+A.1+A'|+l’2-—£\1 —Azqm’z[Ul’ll& % TMJQ]?;;J};:
(13}

and [Th% x U*%]RI42 js given by an equation similar to (3) but containing two
sug(2) = s0,(3) Wigner coefficients instead of one.
Taking (11} into account, relations (12) can be written in explicit form as

(8!, By = (B, Bly= 8!, B} = (B}, Bl} =0 (14a)
(8, B}, = 18], B}, = (B}, Bl}, = (B}, Bl}, =0 (14)
(B!, B} = —¢'/2(B} B! + BIB}) (14¢)
{By, B}y = {B1, Bl}y-t = {By, B}y = {By, B}y = 0 (14d)
{By, Bllg-1 = (g7 — g7')B! B, (14¢)
{Bs, Bl}gn = (g™"* - g7Y")B] B, (14
{B,BlY=1  {By,Bl}=1{By,Bly=1+(s"' - 1)B]B, (14g)
{Bs, Bl} =1+ {(g”' —DI(1 —q~")B}B, + BiB, + BB]] (14h)

together with the Hermitian conjugates of (14a)-{147.

t Note also that the mixture of Bose-like and Fermi-like operators obtained for g > 1, aithough already observed
before in connection with some non-standard R-matrices [8], is new in the standard R-matrix context (disregarding
the case of quantum supesgroups).

1 Here, we use the notation of [10] for Aj;, which slightly differs from that of {9].
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The algebra defined in (12), or (14), can be constructed by using either the g-algebraic
technique or one of the two R-matrix formulations that were employed for g-bosonic
operators in [9] and [10], respectively. Scme comuments about associativity, analogous
to those for the algebra defined in (1) or (4), could be made here. We shall instead go
directly to the Fock-state construction where some new features make their appearance.

It is clear that equations (14a)—(14¢) do not provide enough relations to put any product
of creation operators in lexicographical order, no rule being available to reorder B; B;. It
can be shown that any monomial state

lwapta. .. pn) = BE BL .. BLIOY  pppe. =14 (15)
with n 2 3 can be rewritten in terms of the following states:

[1(23)") 1(23)"""24) 11(32)*) 11(32)""'34) 1(23)°2)

(16a)
1(23)"4) [(32)"3) [(32)"4) ifrn=2w+1

11(23)"~'2) [1(23)*"14) |1(32)"~13) 11(32)"~14) 1(23)") (166)
[(23)""24) 132" 1(32)”"‘34) ifn=72v

the one- and two-particle states being given by [1), [2), [3), [4) and |12), |13), [14), |23),
|24), |32), |34), respectively. In (16), (23)", for instance, stands for the product (BJBD”.

The overlap matrix of the monomial states can be recursively determined. For (16a)
and (165), the results are

Ma() 0 Ms,_i(q) 0
(0 M2v+1<q)) and ( 0 Mzu(Q)) an

respectively, where, forv=1,2, ...,

1 0 =g 0
0 1 0o 0
Mo, (g) = [[v — 1]],! 47 0 1 0 (18a)
0 0 0 1
Mvll, © 0 0
_ 0 1 0 —gv
Moy (g) = {[v — 1]],! 0 0 [, O (1856)
0 —g~ 0 1

[Ny =1 — g™, [[v]],! = [[v)igllv — 1]); . .. {[11]; for v € N* and [[0]];! = 1. As Jong
as g > 1, the overlap matrix is, therefore, positive definite and a Fock-space orthonormal
basis is given by

|0) [(v)2) = (v, 1y~ 121(23)"2) |(1)3) = (I[v]],H~((32)*3)
v + D) = QIIvIl, ! F ¢~ 20@3y ) £ 132)7T)] v=0,1,2,... (19

together with similar states obtained by adding labels 1, 4, or 14 to (19}, i.e. |1}, [1()2),
1103, 11w =+ 1L}, [4), [(v)24), [(0)34), (v + 1)4E), [14), [1(v)24)}, |1(v)34) and
11{v+1)4+}. Such a basis contains both symmetric and antisymmetric states under exchange

of labels 2 and 3, each of the latter being repeated any number of times.
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In the ¢ — 1 limit, however, the states with mare than one label 2 or one label 3, as
well as those symmetric under exchange of 2 with 3, have a vanishing norm so that the
only surviving states are

10} 1} 12} 13) 14} 112) 113} 114)
(1)) = §{123) — 32)] [24) |34) 1(1)=) = 31]123) - |132)] (20
[124) 1134) [(1)4~) = 3{1234) — |324)] [1(1)4=) = 1[11234) — |1324)].

These states can be put into one-to-one correspondence with fermion states with which they
can be identified.

In conclusion, we have given two examples of covariant deformed oscillator algebras
with a non-standard behaviour. The first example provides enough rules to reorder any pair
of operators, while, in the second, one rule is missing. In both cases, however, for g > 1,
the Fock space contains some states that disappear in the ¢ — 1 limit. A drastic change of
statistics is therefore observed as in the case of the quon algebra.

Covariant deformed oscillator algebras with such properties are very common and
actually occur for any braid mateix with more than two distinet eigenvalues. The first
algebra considered in the present paper, for instance, can be generalized to any guantum
group O4(2n -+ 1, R} while the second algebra can be extended to any O4(2n, R) or to any
SU,(r) x SU,(m).

It is also worth noting that some algebras closer to the quon algebra, in the sense that
they contain less relations among creation (or annihilation) operators, can be constructed.
Using the projector onto the eigenspace of the @, (3, R) braid matrix comesponding to L =0
would lead, for instance, to an algebra with a single relation among creation operators.
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